Plasma gasification is a phrase heard often when discussion plasma-arc treatment or waste-to-energy technologies, however this entry looks to give a closer look as to what plasma gasification is and its associated reactions. Plasma gasification is a thermal chemical conversion process designed to optimize the conversion of waste into the synthetic gas or (“syngas”). The chemical reactions take place under oxygen starved conditions. The ratio of oxygen molecules to carbon molecules can be less than one in a plasma gasification reactor (sometimes a stoichiometric amount of oxygen to achieve pyrolysis).
The following simplified chemical conversion formulas describe some of the thermo-chemical processes that are typically occurring in gasification.
Equation 1. C (fuel) + O2 –> CO2 + heat (exothermic)
Equation 2. C + H2O (steam) –> CO + H2 (endothermic)
Equation 3. C + CO2 –> 2CO (endothermic)
Equation 4. C + 2H2 –> CH4 (exothermic)
Equation 5. CO + H2O –> CO2 + H2 (exothermic)
Equation 6. CO + 3H2 –> CH4 + H2O (exothermic)
Some of the waste undergoes partial oxidation by precisely controlling the amount of oxygen fed into the plasma reactor (see first reaction above). The heat released in the above exothermic reactions provide additional thermal energy for the primary gasification reaction (endothermic formulas above) to proceed very rapidly.
At higher temperatures (around 3,600°F) the endothermic reactions are typically favored. Some plasma companies (not PEAT however) introduce supplementary fuels such as coal, petroleum coke or even other hot gases generated by their plasma torches (sometimes referred to as plasma-assisted gasification) to maintain the desired plasma gasification temperatures in the reactor.
The reducing atmosphere within the plasma gasification reactor avoids the formation of oxidized species such as sulfur dioxide (SO2) and nitrogen oxide (NOx). Instead, sulfur and nitrogen (organic-derived) in the feedstock are primarily converted to hydrogen sulfide (H2S) and nitrogen. Finally, typical halogens in the feedstock are converted to inorganic acid halides (HCl, HF, etc.)
3 Responses to “Plasma Gasification”
Leave a Reply
You must be logged in to post a comment.
August 3rd, 2012 at 2:35 PM
……
Hello! I know this is somewhat off topic but I was wondering which blog platform are you using for this site? I’m getting sick and tired of Wordpress because I’ve had problems with hackers and I’m looking at alternatives for another platform. I woul…
August 14th, 2012 at 8:57 PM
… [Trackback]…
[...] Informations on that Topic: peat.com/blog/plasma-gasification-2/ [...]…
May 11th, 2013 at 12:57 PM
OaklEy EyEpatcH…
Your article is here, the feeling of a mere individual can harvest more.Let these people from all over the world, even in the heart with happiness. We are not desolateness….