Plasma-Arc Gasification And Emissions

Emissions, Medical Waste Treatment, PTDR Systems, Plasma Arcs, Plasma Gasification, Waste To Energy, Waste To Resources, Waste Treatment Add comments

Previously, we discussed and demonstrated how plasma arc plasma gasification nearly eliminates dioxin formation, this entry looks to address semi-volatile heavy metal compounds and other air emissions.

The high temperatures at which the plasma-arc plasma gasification processes operate can result in the generation of volatile inorganic constituents (i.e. metals and metal oxides), sometimes at a higher level than compared to convention thermal treatment processes, particularly if the waste feedstock comes in direct contact with the very hot plasma-arc plasma gasification plume as these compounds may become volatilize and carried downstream with the syngas generated. While many are removed by the gas cleaning and conditioning systems, in plasma-arc plasma gasification processes where the off gases are not cooled (i.e. plasma combustion, which is not utilized by PEAT) these heavy metal compounds could be carried out in the stack gases, increasing the levels of potential contaminants that are emitted.

Downstream of any quench system or syngas cooler, any entrained particulate matter and/or acid gases (H2S, HCl, etc.) are scrubbed with water typically using either a packed-bed tower/Venturi scrubber or through a dry filtration system. Additional equipment in the form of HEPA or baghouse filters may also be utilized.

The results presented in the below reflect emissions from PEAT International plasma-arc plasma gasification waste-to-energy systems where the syngas was not utilized and ultimately processed in a thermal oxidizer or secondary reaction chamber.

Emission /
Waste Stream

Sulpho-phenyl
methyl pyrazolone,
(High Sulfur (20%),
High Chlorine (14%))
Gujarat, India

Incinerator fly ash
and medical waste
in Tainan, Taiwan

Medical Waste
in Gujarat, India

PM (gr/scf) 0.00817 0.004806 0.01057
CO (ppmv)

ND
(DL: 0.08 ppm)

ND
(DL: 2.8 ppm)

NR

NOx (mg/nm3)

0.35

48.95

129.32

SOx (mg/nm3)

13.1

55.03

22.72

HCl

ND
(DL: 0.00671 ppm)

ND
(DL 5.1 ppm)

ND
(DL 1 ppm)

Lead (μg/nm3)

NR

43.46

ND
(DL 1.0 μg/m3)

Cadmium

NR

1.94 μg/nm3

19.51 μg/m3

Mercury

NR

6.4 μg/nm3

ND
(D.L. 1.0 μg/m3)

VOCs

NR

NR

ND
(D.L. 1mg/m3)

APC system for each system only included wet venturi scrubber and baghouse filter

One Response to “Plasma-Arc Gasification And Emissions”

  1. Waste to Energy Technologies | Hazardous, Medical Waste Treatment, Waste To Energy Blog Says:

    [...] versus some of the emerging technologies. Referencing back to one of the aforementioned proposed plasma gasification and plasma arc projects in Florida, the $120 million 600 TPD system was marketed to generate about [...]

Leave a Reply

You must be logged in to post a comment.

 
Log in
More in Emissions, Medical Waste Treatment, PTDR Systems, Plasma Arcs, Plasma Gasification, Waste To Energy, Waste To Resources, Waste Treatment (9 of 51 articles)


As discussed earlier in this blog, a vitrified matrix or slag is the primary solid byproduct of plasma arc waste-to-energy processing. ...