More Details on the Gasification Process – Part 1

Emissions, Medical Waste Treatment, PTDR Systems, Plasma Arcs, Plasma Gasification, TVRC Technology, Waste To Energy, Waste To Resources, Waste Treatment, hazardous waste treatment, medical waste No Comments »

The main aspect of gasification, whether it is plasma-arc plasma gasification or “traditional” gasification is to raise carbon–rich materials or waste to a high temperature in an oxygen–deficient reactor, where the materials break down thermochemically versus combustion.

This process is more efficient than incineration, has a significantly lower environmental footprint, while the syngas can be transformed into a number of end products (liquid fuels, power, chemicals, etc.).

The feedstocks for traditional gasification processes range from coal, the organic components of municipal waste and biomass while the range is even greater for plasma-arc plasma gasification processes, which can handle just about any waste stream with the exception of radioactive materials.

Due to the fact that gasification occurs pre-combustion (assuming the syngas would be burned to generate electricity), it supports easier carbon capture than incineration where the chemistry can be more complex.

Plasma-arc plasma gasification is just one type of gasification. Other common forms include (1) updraft, (2) downdraft, (3) fixed bed and (4) fluidized bed. The first two are quick similar with exception of the gas flow. More on the differences in the next posting.

Plasma Gasification Chemistry

Medical Waste Treatment, Plasma Arcs, Plasma Gasification, Waste To Energy, Waste To Resources, Waste Treatment, hazardous waste treatment No Comments »

Plasma-arc plasma gasification is a phrase heard often when discussion hazardous waste treatment or waste-to-energy technologies, however this entry looks to give a closer look as to what plasma-arc plasma gasification is and its associated reactions. Plasma-arc plasma gasification is a thermal chemical conversion process designed to optimize the conversion of waste into the synthetic gas or (“syngas”). The chemical reactions take place under oxygen starved conditions. The ratio of oxygen molecules to carbon molecules can be less than one in a plasma-arc plasma gasification reactor (sometimes a stoichiometric amount of oxygen to achieve pyrolysis).

The following simplified chemical conversion formulas describe some of the thermo-chemical processes that are typically occurring in plasma-arc plasma gasification.

Equation 1. C (fuel) + O2 →CO2 + heat (exothermic)
Equation 2 C + H2O (steam) → CO + H2 (endothermic)
Equation 3 C + CO2 → 2CO (endothermic)
Equation 4 C + 2H2 → CH4 (exothermic)
Equation 5 CO + H2O → CO2 + H2 (exothermic)
Equation 6 CO + 3H2 → CH4 + H2O (exothermic)

Some of the waste undergoes partial oxidation by precisely controlling the amount of oxygen fed into the plasma-arc plasma gasification reactor (see first reaction above). The heat released in the above exothermic reactions provide additional thermal energy for the primary plasma-arc plasma gasification reaction (endothermic formulas above) to proceed very rapidly.

At higher temperatures (around 3,600°F) the endothermic reactions are typically favored. Some plasma-arc companies (not PEAT however) introduce supplementary fuels such as coal, petroleum coke or even other hot gases generated by plasma torches (sometimes referred to as plasma-assisted gasification) to maintain the desired plasma-arc plasma gasification temperatures in the reactor.

Additionally, plasma-arc plasma gasification currently appears to be the option being promoted most widely for larger scale waste-to-energy applications mainly because of its ability to produce the syngas from which energy can be recovered in high efficiency recovery units so offsetting the high energy requirements of plasma-arc plasma gasification.

The reducing atmosphere within the plasma-arc plasma gasification reactor avoids the formation of oxidized species such as sulfur dioxide (SO2) and nitrogen oxide (NOx). Instead, sulfur and nitrogen (organic-derived) in the feedstock are primarily converted to hydrogen sulfide (H2S) and nitrogen. Finally, typical halogens in the feedstock are converted to inorganic acid halides (HCl, HF, etc.)

China Gets Plasma Thermal Waste Destruction System

Medical Waste Treatment, PTDR Systems, Plasma Arcs, Plasma Gasification, TVRC Technology, Waste To Energy, Waste To Resources, Waste Treatment No Comments »

PEAT International has successfully commissioned a Plasma Thermal Destruction and Recovery (PTDR) systems in Shanghai, China. The system was designed to deconstruct medical waste and oil refinery sludge.

PEAT International, Inc. (PEAT), a plasma-thermal waste destruction company, has installed a PTDR system in Shanghai, China. The 60 kg/hr system was specifically designed for the treatment of medical waste and oil refinery sludge for Abada Plasma Technology Holdings, Ltd.

“This is end-stage technology and sets the standard for clean hazardous waste remediation. Only with plasma can you achieve temperatures high enough for waste destruction in a single-staged process,” said Joseph Rosin, PEAT International chairman. “It’s a 21st century solution that addresses three important needs: significant volume reduction, full pollution control and competitive pricing. We are currently preparing for other projects already under contract.”

PEAT’s PTDR “single stage” plasma-thermal process transforms hazardous waste through molecular dissociation at 1,500°C (2,732°F) into recoverable, non-toxic end-products, synthetic gas and heat (sources for energy recovery), metals, and a vitrified glass matrix. Emissions are below the most stringent environmental standards.

PTDR systems are in operation in California, Taiwan, and China. For more information and to watch a video of operations, please click here.

PEAT International Commissions Plasma Thermal Waste to Energy System in China

Medical Waste Treatment, PTDR Systems, Plasma Arcs, Plasma Gasification, TVRC Technology, Waste To Energy, Waste To Resources, Waste Treatment No Comments »

Northbrook, Illinois & Shanghai, China – October 10, 2013 – PEAT International, Inc., (“PEAT”) a leader in plasma-thermal waste destruction systems, announced the successful commissioning of a Plasma Thermal Destruction and Recovery (“PTDR”) system in Shanghai, China. The 60 kg/hr system – designed for medical waste and oil refinery sludge – was installed for Abada Plasma Technology Holdings, Ltd. – an Asian-based renewable energy project developer.

PEAT’s PTDR “single stage” plasma-thermal process transforms hazardous waste through molecular dissociation at 1,500°C (2,732°F) into recoverable, non-toxic end-products, synthetic gas and heat (sources for energy recovery), metals and a vitrified glass matrix. Emissions are below the most stringent environmental standards used anywhere.

“This is end-stage technology and sets the standard for clean hazardous waste remediation. Only with plasma can you achieve temperatures high enough for waste destruction in a single-staged process,” said Joseph Rosin, PEAT International Chairman. “It’s a 21st century solution that addresses three important needs: significant volume reduction, full pollution control and competitive pricing. We are currently preparing for other projects already under contract.”

PTDR systems are in operation in California, Taiwan and China. Go to http://www.peat.com/chinasystem.html for a video of operations and acceptance test run data.

About PEAT International

PEAT International, Inc., headquartered in Northbrook, Illinois, with offices in China, Taiwan and India, is a waste-to-energy (“WTE”) company with its two proprietary technologies – the Plasma Thermal Destruction and Recovery™ (“PTDR”) technology for the treatment and recycling of industrial, medical and other hazardous waste streams and the Thermal Volume Reduction & Conversion™ (“TVRC”) technology for municipal solid waste. For more information, contact Daniel Ripes, dripes@peat.com, at 847-559-8567 and visit www.peat.com.

Waste to Energy Technology

Plasma Arcs, Plasma Gasification, Waste To Energy, Waste To Resources No Comments »

As a pure waste-to-energy technology, the TVRC competes with mass burn incinerators, anaerobic digesters as well as traditional gasification systems within the MSW marketplace. While mass burn incinerators are the most popular still to this day, they generate significant amounts of fly ash, which in the near term could become even more expensive to treat as in June 2010, the US EPA started to consider classifying fly ash (CCRs) as a hazardous waste. Should this be the final directive, it will significantly impact how fly ash is ultimately handled.

While MSW applications have started to emerge using gasification, it is important to note that a significant amount of sorting and pre-treatment is required in order to make the feedstock more uniform in nature to maintain the steady flow and composition of the syngas generated. Additionally, the TVRC generates electricity at a much lower cost.

Technology Capital Cost per MW
Plasma Gasification ~ $6.5+MM/MW
Traditional Gasification ~ $5+ MM/MW
Anaerobic digestion ~ $3+ MM/MW
Mass burn (waterwell/modular/RDF boiler/fluidized bed) ~ $2+ MM/MW

 
Finally, the TVRC generates significantly more electricity per ton of MSW versus some of the emerging technologies. Referencing back to one of the aforementioned proposed plasma gasification and plasma arc projects in Florida, the $120 million 600 TPD system was marketed to generate about 42 MW, of which only 18 MW would be sold to the grid.

A TVRC waste-to-energy & waste to resource system also represents the most efficient land usage when compared to other renewable energy options.

Renewable Land per MW
Landfill gas 27 acres/MW
Wind 18 acres/MW
Solar 8 acres/MW
WTE 0.7 acres/MW
 
Log in